TDA2030功放电路图 电动车充电器电路图 电子电路 功放电路 电子制作 集成块资料 电子报 pcb 变压器 元器件知识 逆变器电路图 电路图 开关电源电路图 传感器技术 led 电磁兼容
电子电路图
当前位置: 首页 > 元器件知识

MOSFET的击穿有哪几种?

时间:2021-04-26 17:07:08来源:平尚科技 作者:小谷 点击:
Source、Drain、Gate —— 场效应管的三极:源级S、漏级D、栅级G。(这里不讲栅极GOX击穿了啊,只针对漏极电压击穿)

先讲测试条件,都是源栅衬底都是接地,然后扫描漏极电压,直至Drain端电流达到1uA。所以从器件结构上看,它的漏电通道有三条:Drain到source、Drain到Bulk、Drain到Gate。
Source、Drain、Gate —— 场效应管的三极:源级S、漏级D、栅级G。(这里不讲栅极GOX击穿了啊,只针对漏极电压击穿)

先讲测试条件,都是源栅衬底都是接地,然后扫描漏极电压,直至Drain端电流达到1uA。所以从器件结构上看,它的漏电通道有三条:Drain到source、Drain到Bulk、Drain到Gate。

 Drain→Source穿通击穿:

这个主要是Drain加反偏电压后,使得Drain/Bulk的PN结耗尽区延展,当耗尽区碰到Source的时候,那源漏之间就不需要开启就形成了通路,所以叫做穿通(punch through)。

那如何防止穿通呢?这就要回到二极管反偏特性了,耗尽区宽度除了与电压有关,还与两边的掺杂浓度有关,浓度越高可以抑制耗尽区宽度延展,所以flow里面有个防穿通注入(APT:AnTI Punch Through),记住它要打和well同type的specis。

当然实际遇到WAT的BV跑了而且确定是从Source端走了,可能还要看是否 PolyCD或者Spacer宽度,或者LDD_IMP问题了,那如何排除呢?这就要看你是否NMOS和PMOS都跑了?POLY CD可以通过Poly相关的WAT来验证。对吧?

对于穿通击穿,有以下一些特征:
穿通击穿的击穿点软,击穿过程中,电流有逐步增大的特征,这是因为耗尽层扩展较宽,产生电流较大。另一方面,耗尽层展宽大容易发生DIBL效应,使源衬底结正偏出现电流逐步增大的特征。

穿通击穿的软击穿点发生在源漏的耗尽层相接时,此时源端的载流子注入到耗尽层中,被耗尽层中的电场加速达到漏端,因此,穿通击穿的电流也有急剧增大点,这个电流的急剧增大和雪崩击穿时电流急剧增大不同,这时的电流相当于源衬底PN结正向导通时的电流,而雪崩击穿时的电流主要为PN结反向击穿时的雪崩电流,如不作限流,雪崩击穿的电流要大。

穿通击穿一般不会出现破坏性击穿。因为穿通击穿场强没有达到雪崩击穿的场强,不会产生大量电子空穴对。

穿通击穿一般发生在沟道体内,沟道表面不容易发生穿通,这主要是由于沟道注入使表面浓度比浓度大造成,所以,对NMOS管一般都有防穿通注入。

一般的,鸟嘴边缘的浓度比沟道中间浓度大,所以穿通击穿一般发生在沟道中间。

多晶栅长度对穿通击穿是有影响的,随着栅长度增加,击穿增大。而对雪崩击穿,严格来说也有影响,但是没有那么显著。

Drain→Bulk雪崩击穿:

这就单纯是PN结雪崩击穿了(Avalanche Breakdown),主要是漏极反偏电压下使得PN结耗尽区展宽,则反偏电场加在了PN结反偏上面,使得电子加速撞击晶格产生新的电子空穴对 (Electron-Hole pair),然后电子继续撞击,如此雪崩倍增下去导致击穿,所以这种击穿的电流几乎快速增大,I-V curve几乎垂直上去,很容烧毁的。(这点和源漏穿通击穿不一样)

那如何改善这个junction BV呢?所以主要还是从PN结本身特性讲起,肯定要降低耗尽区电场,防止碰撞产生电子空穴对,降低电压肯定不行,那就只能增加耗尽区宽度了,所以要改变 doping profile了,这就是为什么突变结(Abrupt junction)的击穿电压比缓变结(Graded junction)的低。这就是学以致用,别人云亦云啊。

当然除了doping profile,还有就是doping浓度,浓度越大,耗尽区宽度越窄,所以电场强度越强,那肯定就降低击穿电压了。而且还有个规律是击穿电压通常是由低 浓度的那边浓度影响更大,因为那边的耗尽区宽度大。公式是BV=K*(1/Na+1/Nb),从公式里也可以看出Na和Nb浓度如果差10倍,几乎其中一 个就可以忽略了。

那实际的process如果发现BV变小,并且确认是从junction走的,那好好查查你的Source/Drain implant了。

Drain→Gate击穿:

这个主要是Drain和Gate之间的Overlap导致的栅极氧化层击穿,这个有点类似GOX击穿了,当然它更像Poly finger的GOX击穿了,所以他可能更care poly profile以及sidewall damage了。当然这个Overlap还有个问题就是GIDL,这个也会贡献Leakage使得BV降低。

上面讲的就是MOSFET的击穿的三个通道,通常BV的case以前两种居多。Off-state下的击穿,也就是Gate为0V的时候,但是有的时候Gate开启下Drain加电压过高也会导致击穿的,我们称之为On-state击穿。这种情况尤其喜欢发生在Gate较低电压时,或者管子刚刚开启时,而且几乎都是NMOS。所以我们通常WAT也会测试BVON。w w w . d z i u u . c o m

非常感谢用户pingshang88 的投稿!

本文地址:http://www.dziuu.com/Components/16194280284287.shtml


本文标签:


.
顶一下
0%
返回首页
0
0%

------分隔线----------------------------

    猜你感兴趣:

  • MOSFET和三极管ON状态的区别?

    三极管ON状态时工作于饱和区,导通电流Ice主要由Ib与Vce决定,由于三极管的基极驱动电流Ib一般不能保持恒定,因而Ice就不能简单的仅由Vce来决定,即不能采用饱和Rce来表示(因Rce会变化)。由于饱和状态下Vce较小,所以三极管一般用饱和Vce表示。
    关键词:   所属栏目:元器件知识

  • PW2308芯片,N沟道增强型MOSFET

    一般说明
    PW2308采用先进的沟道技术,提供优秀的RDS(ON)、低栅极充电和低至4.5V的栅极电压运行。该器件适合用作电池保护或其他开关应用。
    特征 VDS=60V,ID=5A
    关键词:   所属栏目:元器件知识

  • PW2337芯片,P沟道增强型MOSFET

    一般说明
    PW2337采用先进的沟道技术,提供优秀的RDS(ON),低栅电荷栅极电压低至4.5V,适用于电池保护或在其他交换应用中。
    特征
    VDS=-100V,ID=-0.9A
    RDS(开)<650m
    关键词:   所属栏目:元器件知识

  • PW2309芯片,P沟道增强型MOSFET

    一般说明
    PW2309采用先进的沟道技术,提供优秀的RDS(ON),低栅电荷栅极电压低至4.5V,适用于电池保护或在其他交换应用中。
    特征
    VDS=-60V,ID=-3A
    RDS(开)<180m&Om
    关键词:   所属栏目:元器件知识

  • PW2319芯片P沟道增强型MOSFET

    一般说明
    PW2319采用先进的沟道技术,提供优秀的RDS(ON),低栅电荷栅极电压低至4.5V,适用于电池保护或在其他交换应用中。
    特征
    VDS=-40V,ID=-5A
    RDS(开)<70m&Ome
    关键词:   所属栏目:元器件知识

  • MOSFET管功率放大电路

      此电路图是用功率MOSFET管构成的功率放大器电路。电路中差动第二级采用型号为2SJ77的MOSFET,电流镜像电路采用2SK214。其工作电流为6mA,但电源电压较高(±50V),晶体管会发热,因此要接入小型散热器。 :
    关键词:   所属栏目:音频功放电路

  • 介绍电脑的麦克风电路及JFET-MOSFET耳机功放电路组成

      通过PC声卡通常具有麦克风输入,扬声器输出,有时线路输入和输出。麦克风输入阻抗设计,只有在动态麦克风200至600欧姆范围。拉扎尔已适应声卡使用一个共同的驻极体传声器使用该电路。他提出了一个复合放大器使用
    关键词:   所属栏目:音频功放电路

  • 开关电源中几种常用的MOSFET驱动电路

    MOSFET因导通内阻低、开关速度快等优点被广泛应用于开关电源中。MOSFET的驱动常根据电源IC和MOSFET的参数选择合适的电路。下面一起探讨MOSFET用于开关电源的驱动电路。   在使用MOSFE
    关键词:   所属栏目:电路图

  • IGBT和MOSFET 器件的隔离驱动技术


    关键词:   所属栏目:电子基础

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
表情:
名称: E-mail: 验证码: 匿名发表
发布文章,推广自己产品。
热门标签